
How to add some code into CASToR: observing general

programming guidelines

June 14, 2017

Foreword

CASToR is designed to be flexible, but also as generic as possible. Any new implementation should
be thought to be usable in as many contexts as possible; among all modalities, all types of data, all
types of algorithms, etc.

Before adding some new code to CASToR, it is highly recommended to read the general doc-
umentation CASToR general documentation.pdf to get a good overview of the project, as well as
this HowTo guide which provides information on the syntax used throughout the code, and some
general programming guidelines to be observed when contributing to CASToR. This guide does not
follow any particular organization so please be sure to read it entirely.

1 Class names

Begin with a lower case letter to identify the type of the class:

• s: for singleton manager classes

• o: for an standalone class

• v: for abstract classes (pure virtual) that cannot be used on their own

• i: for a child class that inherits from a virtual class (with prefix v)

• g: for any file which is actually not a class

No underscore, all words attached and upper case at the beginning of each word. When an object
is used, the first letter after the prefix must be upper case.

Listing 1: Examples of class names.

1 class oChicken;

2 class sMyManager;

3 class vMyVirtualClass;

4 class iChildChicken;

2 Class members

All class members begin with a lower case ’m’, then follows the number of pointers indicated by the
letter ’p’, then underscore, and then begin the name of the member with two possibilities; i) first
letter in lower case if it is a built-in non-object type, ii) first letter in upper case if it is an object.
Then all words attached with upper case at the beginning of each word.

1

Listing 2: Examples of class members naming.

1 int m_nbChicken;

2 int* mp_chickenSizes;

3 int** m2p_chickenChickenSizes;

4 int*** m3p_chickenChickenChickenSizes;

5 oChicken* mp_Chicken;

3 Class functions

Destructor declaration and implementation is mandatory. No prefix, no underscore, all words at-
tached, begins with an upper case, upper case at the beginning of each word. Parameters begin with
prefix ’a[xp] ’ followed by all words attached and upper case at the beginning of each word (’xp’
for any pointers, as for class members eg: a2p chickenChickenSizes), except for built-in non-object
parameters where the first letter after the underscore is in lower case.

Listing 3: Examples of class functions naming.

1 int MyFunctionThatReturnsAnInteger(int a_intNumber , int* ←↩
ap_pointerToAnInteger , oChicken* ap_MyChicken);

As a general rule, all functions must return an integer specifying the status of the function: 0
means success and any other value means an error occured. By doing so, any error encountered at
any level can be caught by the main which called the function which called the function which called
the function, etc. Each time a function is called, the returning value must be tested. Exceptions
include small functions that cannot possibly encounter errors and/or are called many times during
the process, or functions returning a value. For the last case, as most functions return values superior
or equal to 0, a returned negative value is usually used as an error indicator.

In the implementation files (i.e. ’.cc’ extension), use the following separator between two func-
tions (one empty line before, another after):

Listing 4: Functions separator.

1 // ===

2 // ---

3 // ---

4 // ===

4 Class constructor, parameters and initialization

Most of the classes are built on the same concept. The constructors do not have parameters,
must be called without parameters, and their sole role is to initialize all members with a default
value. All parameters are then provided through the use of dedicated Set() functions. Once done,
a CheckParameters() function is called to check that all mandatory parameters are correctly set.
Follows a call to an Initialize() function which performs all required initialization steps, as the name
suggests. Then the class can be used through its other dedicated member functions.

5 Local variables

Syntax of the local variables involves underscore to separate all words. No upper case is used, except
for the first letter of the variable’s name if it is an object.

Listing 5: Examples of local variables naming.

2

1 int nb_chicken = 2;

2 oChicken* My_chicken = NULL;

6 Indentation

Two spaces is the standard for indentation in the entire code. No tabulations.

7 Comments

Comment as much as possible inside the code to explain what is done and why, you will be rewarded
for sure. In a new class, in the specification file, include a description of the purpose of the class.
This is done using the doxygen syntax. Each function is documented in the specification file using
the doxygen syntax. Documentation includes the aim of the function, description of the different
parameters, and (optionally) details on the implementation. Documentation of the function in the
implementation file is greatly advised, but not mandatory, and don’t follow any specific format.

Inside a function, comment on the methodology using standard C++ ’//’ signs; do not use the
’/*’ then ’*/’ signs.

8 Source tree

One root folder, inside which there are the main programs, the makefiles, two folders for the sources
(include and src) containing themselves thematic folders, one folder for the configuration files (con-
fig) containing itself different folders for specific purposes (e.g. scanner, projector), and one folder
for utilitaries code (toolkits). The makefile will create a bin and a tmp folder. Each class is composed
by at least 2 files when CPU only is used, and 3 files when GPU is used.

• A specification file with ’.hh’ extension, located inside a thematic folder of the include folder

• An implementation file for the CPU part, with ’.cc’ extension, located inside a thematic folder
of the src folder

• An implementation file for the GPU part (if needed), with ’.cu’ extension, located inside a
thematic folder of the src folder.

The files’ names are exactly the same as the class name with the associated extension. For inde-
pendent GPU functions, the file name begins with a prefix ’g’, and the specification file extension
is ’.cuh’ and implementation file extension ’.cu’.

9 Non-class files

For other files that include some general functionnalities not contained in classes, the file name
begins with the lower case ’g’. Currently there is one important header file include/management/g-
Variables.hh which contains important macro definitions, two other files include/management/gOp-
tions.hh and src/management/gOptions.cc that implement some functions related to command line
parameters reading.

10 Specific rules

At the beginning of each file, include the gVariables.hh file. It contains all useful includes from the
standard library. It also contains the line saying the std namespace is used, so the use of another
namespace is not allowed.

3

11 Messages display and verbosity

Macro definitions are used to display messages to the standard output or error interfaces, namely
Cout and Cerr respectively. These macros allow to automatically log any message into a log file
that is also automatically created when CASToR is used. The name and localization of this log file
are based on where CASToR is executed and the provided output base name. See examples in the
code to know how to use these macros.

The verbosity level, whatever the class, should obey the following guidelines as much as possible
(the test over the verbose level is incremental ’>=’):

• 0: No output except warnings and errors.

• 1: The lightest setting for progression status (1 message from each involved manager starting
initialization and basis status of reconstruction).

• 2: The standard setting for progression status (specific types of modules used during initial-
ization and more details reconstruction).

• 3: The heaviest setting for progression status (all relevant information during initialization
and reconstruction).

• 4: A message at the beginning of each function that is called only a few times, with prefix
”+++++” (Encapsulated in CASTOR VERBOSE).

• 5: A message at the beginning of each function that is called many times, excluding those at
the event level, with prefix ”+++++” (Encapsulated in CASTOR VERBOSE).

• 6: A message at the beginning of each function that is called many times, including those
at the event level, with prefix ”+++++” (Encapsulated in CASTOR VERBOSE). Also any
other message more specific than just entering a function, at the event level.

• 7+: Any message originating from a function below the event level (e.g. action on a voxel for
an event), with prefix ”+++++” (Encapsulated in CASTOR VERBOSE).

The messages prompting a call to a function, including in levels 4, 5 and 6, are embedded into
a specific macro definition DEBUG VERBOSE, defined in the file include/management/sOutput-
Manager.hh. At these verbose levels, the messages are not logged. For the levels 6 and 7++ (at or
below the event level), the other messages are explicitely implemented within the code but should
still be encapsulated within the CASTOR VERBOSE environment variable.

Note that the harmonization of verbose levels is not an easy task, so this is a permanent work-
in-progress.

12 Configuration files

There is a config folder that contains all possible configuration files organized in sub-folders. The
CASTOR CONFIG environnement variable or CMake variable must be set to the config folder of
CASToR in order to be able to find the configuration files (or use the ’-conf’ option). Here is a list
of all sub-folders including:

• scanner folder, which contains the scanner configuration files

• projector folder, which contains the configuration files specific to the different projectors

• optimizer folder, which contains the configuration files specific to the different optimizers

• convolver folder, which contains the configuration files specific to the different image convolvers

• processing folder, which contains the configuration files specific to the different image process-
ing modules

• misc folder, which contains miscellaneous configuration files, such as isotopes parameters

4

13 Precision of the computation (floating point and integer num-
bers)

The precision of all computations in CASToR are left to the choice of the user when compiling the
code. To do so, simple macros defining the types of the variables are used. They are defined in the
include/management/gVariables.hh file. There are four different macro-types:

FLTNB : this macro-type defines the precision of floating point numbers used in the computations
and can be float, double and long double. So any time you define a floating point variable, use
this macro-type instead of the actual standard C type.

FLTNBDATA : this macro-type defines the precision of floating point numbers that are read or
written, for datafiles.

FLTNBLUT : this macro-type defines the precision of floating point numbers that are read or
written, for scanner LUT file.

INTNB : this macro-types defines the precision of integer numbers used for images dimensions.

14 Doxygen

Technical documentation is generated using Doxygen. Doxygen comments must only appear in the
header files (i.e. ’.hh’ extension).

5

